Ulam stability of an additive-quadratic functional equation in Banach spaces
نویسندگان
چکیده
منابع مشابه
Approximate mixed additive and quadratic functional in 2-Banach spaces
In the paper we establish the general solution of the function equation f(2x+y)+f(2x-y) = f(x+y)+f(x-y)+2f(2x)-2f(x) and investigate the Hyers-Ulam-Rassias stability of this equation in 2-Banach spaces.
متن کاملStability of generalized QCA-functional equation in P-Banach spaces
In this paper, we investigate the generalizedHyers-Ulam-Rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{Z}-{0,pm1}$) in $p-$Banach spaces.
متن کاملStability of Cauchy Additive Functional Equation in Fuzzy Banach Spaces
In this article, we prove the generalized Hyers–Ulam stability of the following Cauchy additive functional equation
متن کاملGeneralized Hyers–ulam Stability of an Aqcq-functional Equation in Non-archimedean Banach Spaces
In this paper, we prove the generalized Hyers–Ulam stability of the following additive-quadratic-cubic-quartic functional equation f(x + 2y) + f(x− 2y) = 4f(x + y) + 4f(x− y)− 6f(x) + f(2y) + f(−2y)− 4f(y)− 4f(−y) in non-Archimedean Banach spaces.
متن کاملSolution and Hyers-Ulam-Rassias Stability of Generalized Mixed Type Additive-Quadratic Functional Equations in Fuzzy Banach Spaces
and Applied Analysis 3 with f 0 0 in a non-Archimedean space. It is easy to see that the function f x ax bx2 is a solution of the functional equation 1.8 , which explains why it is called additive-quadratic functional equation. For more detailed definitions of mixed type functional equations, we can refer to 26–47 . Definition 1.1 see 48 . Let X be a real vector space. A function N : X × R → 0,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Inequalities
سال: 2020
ISSN: 1846-579X
DOI: 10.7153/jmi-2020-14-27